

"Rapid" 3D Bridge Models

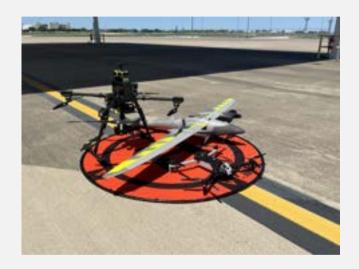
Using Drones, 360 Cameras, and Gaussian Splats

November 18, 2025

Presenter

Travis Scruggs
GIS Analyst/UAS Pilot
TxDOT - Transportation,
Planning, and
Programming Division

How do we model reality?



3D Scan

Ortho

How do we model reality?

High Resolution – Huge files Long Collection Times

Low(er) Resolution – Huge files Short Collection Times

Overview - Photogrammetric Mesh Models vs. 3D Gaussian Splats

	Photogrammetric Mesh Models	3D Gaussian Splats
Geometric Accuracy/ Precision	///	✓
Visual Fidelity/Photorealism	//	///
Processing Time	✓	///
Integration with GIS	///	✓

What is a 3d Gaussian Splat?

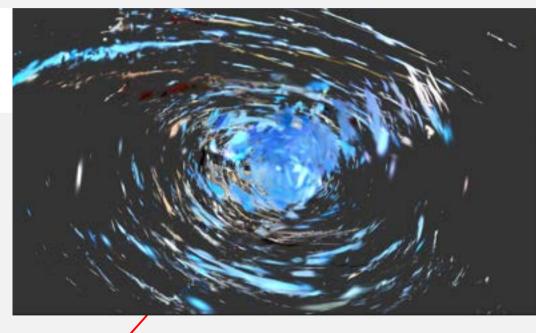
Gaussian splatting is a volume

rendering technique that deals with the direct rendering of volume data without converting the data into surface or line <u>primitives</u>. (wiki)

What is a 3d Gaussian Splat?

Gaussian splatting is a volume

rendering technique that deals with the direct rendering of volume data without converting the data into surface or line <u>primitives</u>. (wiki)


What is a 3d Gaussian Splat?

Characteristics:

- Position: where it's located (XYZ)
- Covariance: how it's stretched/scaled (3x3 matrix)
- Color: what color it is (RGB)
- Alpha: how transparent it is (a)

Frustums: Pinhole camera viewpoint

Methods: Tools and Software

Tools:

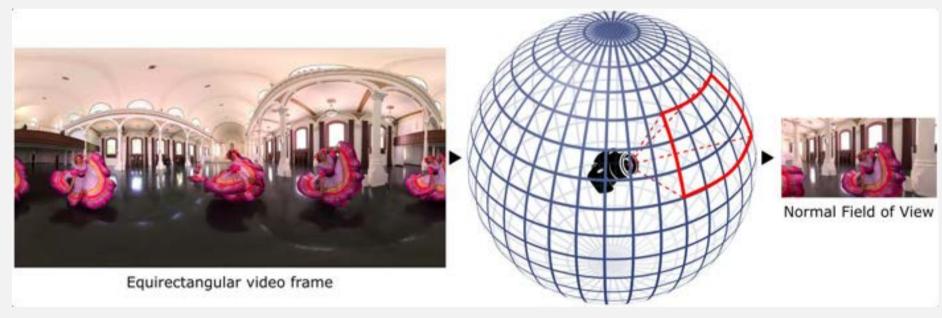
- Insta360 x3 (or better)
- Computer with plenty of CPUand GPU capability

Software:

- COLMap
- PostShot and/or NerfStudio

Methods: Video manipulation

360 Spherical > Equirectangular



360 Spherical

Equirectangular

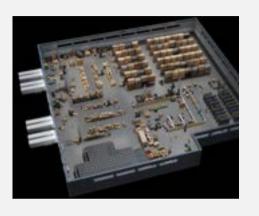
Methods: Equirectangular to Frames and Perspectives

Length in Seconds * 3 = Target number of frames Each Frame divided into 6/8/14 perspective views

30 seconds video = 1,260 images!

Demo in PostShot, iTwin, and Splatica

WAIT! Where are the Drones??



The Future

There's so much coming!

- Rapid advancements coming out monthly
- NVIDIA GTC announcments
 - Rapid Splat
 - Multi-GPU processing
 - o 3D Gaussian Ray Tracing Project: https://gaussiantracer.github.io/
 - o 3D Gaussian UnscentedTransforms Project: https://research.nvidia.com/labs/toronto-ai/3DGUT/
 - Difix3D+ Project: https://research.nvidia.com/labs/toronto-ai/difix3d/
 - o 3DGRUT Code (Open Source): https://github.com/nv-tlabs/3dgrut
 - Follow Sonja's Lab 's Work: https://research.nvidia.com/labs/toronto-ai/

Questions?

Travis Scruggs

Travis.Scruggs@txdot.gov